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Synopsis

Projected ranges are calculated for low-energy light particles in heavy substances (e.g. 
20 keV deuterons in gold), together with straggling in projected range, assuming randomness 
of stopping material. The projected range turns out to be considerably less than the range along 
the path, and the distribution in projected range is very broad. The range ratio RP/R as well 
as the relative straggling ARy/Ry, are independent of stopping substance when a reduced 
energy measure, e, is used, and are not strongly dependent on the atomic number of the 
projectile.

As an extension of earlier work are presented range-energy tables covering a large number 
of combinations of incoming particle and stopping substance.
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§ 1. Introduction

lie purpose of the present paper is to study in detail some aspects of 
range distributions and thus to supplement the results in a previous 

paper, “Range Concepts and Heavy Ion Ranges” (Lindhard, Scharff and
Sciiiott (1963)-in the following referred to as LSS). Of the problems 
treated in the following, one arose from a discussion of the recent measure
ments by Ciiu and Friedman (1965), where projected ranges were ob
served for 20 keV deuterons in aluminium and gold. The projected ranges 
found by Chu and Friedman were considerably smaller than the theoretical 
range along the path, which was somewhat unexpected since the ranges of 
light particles as protons, deuterons, etc. are normally little influenced by 
scattering effects. In §2, consequently, the projected range is calculated 
as function of energy in the case of « Z2, where Zx and Z2 are atomic 
numbers of incoming particle and stopping material, respectively. It is 
shown that, at low energies, the projected range may become an order of 
magnitude less than the range along the path. Calculations giving the fluc
tuation in projected range are also included.

In § 3 are presented numerical calculations on range along path as 
function of energy, performed since the appearance of LSS.

Integral equations describing the distribution in projected range are 
discussed in the Appendix. Il should be emphasized that calculations in 
LSS, as well as in the present paper, are based on the assumption of 
randomness in the stopping substance. Caution should therefore be observed 
in comparisons between these theoretical results and experimentally deter
mined ranges in crystals, where special directional effects may come into 
play, cf. e.g. Kornelsen et al. (1964), and Lindhard (1965).

General aspects of projected range calculations

An energetic charged particle loses energy by electronic and nuclear 
collisions, but is deflected by nuclear collisions only (Bohr, 1948). At high 
particle velocities the electronic stopping is completely dominating, the 
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nuclear stopping being ~ 103 times smaller than electronic stopping. This 
picture is valid for e.g. a-particles from radioactive decay, and in general 
for v > i’L = v0Z2, where v0 = e2/h . At lower velocities, i.e. u < i\, 
the electronic stopping is nearly proportional to velocity (Lindhard and 
Scharff, 1961) and may still remain dominating for < Z2. For heavy 
particles, and with decreasing velocity, nuclear slopping gradually takes 
over relative to electronic stopping to form the major part of the energy loss.

Accordingly, it is natural, when calculating projected ranges, to divide 
in two groups. In the first group the total range is determined by electronic 
stopping solely, the nuclear collisions being responsible for scattering only. 
This is the simplest case, the solution of which is well-known for light 
particles at high energies, e.g. MeV-protons, a-particles, etc. It is also the 
case to be discussed in the following, but for particles al low energies.

In the second group the energy loss in nuclear collisions is an essential 
part of the total energy loss, so that the total range is partially determined 
by nuclear stopping. This case, which is the more complicated except when 
electronic slopping is much less than nuclear stopping, was treated in LSS.

Brief review of the main features of LSS

In LSS a comprehensive theoretical treatment of range-energy relations 
for slow heavy ions was attempted. The treatment was based on a universal 
nuclear stopping cross section, Sn, calculated from a Thomas-Fermi model 
of the interaction between heavy ions, and an electronic stopping cross 
section, Se, proportional to v, the velocity of the incoming particle.

When energy and range are measured in the dimensionless parameters 
e and Q, where

(0

(‘2)

(a being the screening parameter in the Thomas-Fermi potential a = a0- 
0.8853 (Z3/3 + Z2/3)_1/2) the nuclear stopping power, i.e. ÇdEfdQ)n is a func
tion of £ only, independent of incoming particle and stopping substance 
(Fig. 1). In the same units the electronic stopping power is represented by 
(dE/d(k)e = kt:12, where
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Figure 1. Nuclear and electronic stopping powers in reduced units. Full-drawn curve represents 
the Thomas-Fermi nuclear stopping power, the dot-and-dash lines the electronic stopping, (3), 

for k = 0.15 and k = 1.5.

0.0793 • Z|/2Z2/2(A1 + A2)3/2 ...u £■_________1__ 2X1___ 27 . t -, yi/6
(Zf/3 + Z2/3)3/4 • A3'2 • 42/2 ’ 1 '

k is of order of 0.1 -0.2 for ZL ~ Z2, and only when Zx « Z2, can k 
become larger than unity. The estimate, (3), of k, which is based on 
Thomas-Fermi arguments, gives a good over-all til lo experiments. Oscil
lations around the theoretical A'-value, due to atomic shell effects, have 
been observed, especially for low atomic numbers (Ormrod and Duck
worth, 1963; Fastrup, Hvelplund and Sautter, 1966). Two represent
ative cases of electronic stopping, i.e. k = 0.15 and k = 1.5, are included 
in Fig. 1. The nuclear stopping power calculated from an inverse second 
power potential between the atoms is also included. This stopping power 
turns out to be constant, leading to a linear range energy relation (Boiir, 
1948; Nielsen, 1956).
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By numerical integration of the inverse total stopping power, ((de/do)n + 
(de/c/p)e)_1, for different values of the electronic stopping parameter, k, 
curves ö = pAy) were obtained and plotted in LSS. The range ö is the total 
length of the particle path. The penetration depth (projected range) is less 
than this quantity - the more so the larger the mass ratio // = ■ I h(‘
ratio qpIq was calculated by a series development to first order in // for 
it « 1 and in a few cases for /t = 1 and // = 2 .

§ 2. Light Particles in Heavy Substances
Mean projected range

The equation governing the average projected range may be written 
down directly (cf. LSS) or may e.g. be derived from the equations describing 
the distribution in penetration depth, cf. Appendix. The equation is

1 = -v | ^,e(7^(^) - Rp(E~ T) ■C()S <?)> (4)

where A' is the number of target atoms per cm3, dane is the differential 
cross section for a collision specified by energy loss to the nucleus and 
277’^ to electrons, T = Tn + XTei, and cp is the deflection angle in the 
i i
laboratory system.

Solution of equation (4) now proceeds as in LSS. The first approximation to fie 
introduced is a series development to first order of the term lip(E - T). Since

4M]_M2

and 7 « 1 in the case of 4A7r « A/2, this is permissible. Moreover, the differential 
cross section favours strongly small energy transfers, Tn « yE, and, further, energy 
loss to electrons in a single collision is always small compared to particle energy. 
Equation (4) then reads

1 = Kp(E)-N dan>e(l - cosy.) + dE
•A’J Tcosy. (5)

By introducing the quantities
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dan e(l — cos 92),

the solution of equation (5) may be written as

(6)

(7)

Equ. (7) should be a good approximation to the average projected range when y 
is small.

In case of /t = M2/Mi « 1 (in which case also y « 1) the scattering 
angle <p is always very small, and Rp is not much different from R. When, 
on the contrary, pt » 1 , there is a possibility of large scattering angles, 
and one cannot beforehand exclude the possibility that the projected range 
becomes considerably smaller than the path length.

In order to estimate Åtr and Str in (6), we separate electronic and nuclear 
collisions, i.e. we put dan e = dan + doe, noting that <p = 0 in electronic 
collisions, while in nuclear collisions (p is given by

cos? - (l-1 1 when y «1. (8)

We thereby obtain

ß2(E) - J t>„

2 ’ E

(9)

Since k Z 1, for Zx « Z2, the electronic slopping is a major part of 
the energy loss even at very low energies (cf. Fig. 1). We then disregard 
nuclear stopping compared to electronic stopping and put Str = Se(E).

In actual calculations it is convenient to introduce the variables q and 
e given by (1) and (2). With this rescaling of units equation (7) may be 
written
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!?p(£) _ 1 f (1e' f de"(/Ltl2)(dE"/dQ)n
Qc(e) oe(e) J (dE'/do)e J (dE"/d())e- e"

o Le
(19)

Since we have neglected unclear stopping compared to electronic stopping, 
Qp(s), given by (10), should be compared with the extrapolated electronic 
range, Qe(e) = 2/c-1 e1/2 (cf. § 3), and although the absolute value of qp(e) 
might be somewhat in error, the ratio @P(e)l@e(e) is expected to be rather 
accurate. Moreover, it may be shown that, if the nuclear stopping con
tributions to Str are not neglected compared to electronic stopping, the 
ratio between projected range and range along path is very nearly equal to 
^®(£)/^e(£)’ as given by eQu- (19). Accordingly, we drop the subscript e in 
Qe(k), simply writing q (e')Iq(e).

Inserting (dE/do)e = ke112 in (19), we notice that ^P(e)/p(e) depends on 
the parameters y and k through the ratio /i/k only; moreover, this ratio is 
very nearly independent of the target material for a specified projectile. 
We may then, by a single integration, calculate e.g. the projected range of 
protons in all heavy materials. Equ. (10) may be solved analytically if 
(dE/do)n is equal to a constant, z, corresponding to the r_2-potential between 
atoms. One then finds

2P(£) 
ë(£)

1 - xexEi(x), x (H.)

where z = 0.327 (cf. Fig. 1), and the exponential integral 
by

Ei(x) is defined

Formula (11) is expected to be fairly accurate for e-values less than 
~ 5 (cf. Fig. 1) and to overestimate the nuclear stopping at higher energies, 
thereby giving loo small values of qpIq . For large values of .r, i.c. for low 
energies, we may use the approximate relation

p(e) x \ x) (12)

In Fig. 2 are shown qp/q given by (11) together with a numerical integration 
of (10) using the Thomas-Fermi nuclear stopping power. Curves are pre-
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Figure 2. Projected range corrections for protons (/z/A: = 13.1), and deuterons (/z/A: = 18.3).
Dashed curve represents the analytical solution (11) for deuterons, i.e. corresponding to constant 

nuclear stopping power.

sented for protons (ß/k = 13.1) and deuterons (ß/k = 18.3). Il is remark
able that the dependence on ß/k is not very strong, and, moreover, that 
values of fi/k for other light particles fall in between those for protons and 
deuterons. Accordingly, an uncertainty in the theoretical estimate of k does 
not affect the value of qp/q in first approximation.

In case of mixed stopping substance, one may estimate the projected 
range by rather simple averages. If there are two elements, a and b, in the 
tai get, one finds Rp lïp^a‘ Rp bIÇxa' Rp^b +(1 ^a)^p,a)’ ^'heie ^p,a and 
Rpb arc the projected ranges in a and b, and xa and 1 -xa are the relative 
abundances of a and b. The formula is valid if Rp in the pure elements of 
the stopping substance is proportional to a common power of E, which 
is the case when Ax is much less than the mass number of both a and b. 
In LSS a similar formula was quoted for the range along path in a mixed 
substance.

It should be mentioned that we have used a velocity proportional elec
tronic stopping power. This approximation is valid for ~ zq = v0-Z^/3 
corresponding to E V E± = Ay-Z^13 - 25 keV. Note that the corresponding 
maximum permissible e-value, £1, for a specified particle decreases with 
increasing Z2. In cases of interest it turns out that £x ~ 50. For E > Ex, 
the stopping power goes through a maximum and then decreases, joining 
smoothly the Bethe stopping power curve. In this region the nuclear 
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stopping is determined by Rutherford scattering, i.e. in e-units (de/d())n 
l/2s-ln (1.29c), (e 10). Therefore, the ratio between electronic and 

nuclear stopping is nearly a constant, of order of 103. It turns out that we 
can pul, with close approximation for e A 10- fy,

ëP(£) = ë(£)-ë(£i) '■ ëp(£i)- (13)

Equ. (13) leads to the familiar conclusion that scattering is a low energy 
phenomenon, so that the path at high energies is a straight line in first 
approximation. We find immediately

= t _ë(£i)-êp(£i) (14)
ë(£) ë(£)

From this equation it is seen that 2p(£)/^(£) increases more rapidly for the 
true electronic stopping than for the velocity proportional stopping, since 
the former case gives a larger range than does the latter.

Formula (13) may be used in an intermediate energy region, where 
the correction from true to projected range still is Z 5°/0. In this region it 
gives directly the correction to a measured projected range, namely the 
constant term @(£1)— £?p(£i)> wbich in actual cases may be calculated by 
means of Table 2 and Fig. 2. For very high energies (~ 1 MeV for protons 
e.g.) the correction ^(/i) - {?p(£i) is negligible, and the difference R — Rp is 
determined by the small multiple scattering at high energies.

Fluctuations in projected range

A projected range becomes smaller than the corresponding true range 
if the particle during slowing-down undergoes numerous collisions with 
appreciable deflections. Because of such deflections the width of the 
distribution in projected range may be considerable, and it is therefore of 
interest to calculate e.g. the fluctuation in projected range. Equations 
governing fluctuations are derived in the Appendix, and it turns out to be 
necessary to treat simultaneously the average square of the projected range, 
Rz, and of the perpendicular range R*.

'fhe equations are of the same type as equ. (4), and may be solved by 
the same approximations if one knows the average projected range, which 
enters as a source term. In Fig. 3 arc shown the results of numerical calcu
lations for protons and deuterons. The curve illustrating the relative straggling 
in projected range shows that at low energies, i.e. e Z 1, the distribution



Nr. 9 11

5 r i i—i—i i i « « i-------- 1---- 1—i i i 1111------- 1—i—i i i i 11

Figure 3. The square of absolute and relative straggling in projected range for protons and 
deuterons, calculated by means of the Thomas-Fermi nuclear stopping power (Fig. 1).

becomes very broad, actually the full width at half maximum is expected 
to be larger than the average value by a factor ~ 2-3. It is therefore ex
pected that a fraction of the incoming particles is ejected from the target.

Comparison with experiments

The distribution in projected range of N15 ions (p/k 13.5) with energies 
0.5-6 MeV has been measured in Au by Phillips and Read (1963). The 
depth distribution was found by observing the yield of a resonance in the 
N15 (p, ay) C12 reaction. The present theory should apply with some reser
vation (à = 0.95, so that nuclear stopping is not quite negligible), and the 
average projected ranges agree with theory within ~ 10°/0. The theoretical 
straggling, (Jp2)1/2, is larger than the experimental value found by measuring 
the width of the Gaussian part of the distribution by ~ 20 - 50 °/0. This 
result is not very surprising, since the distribution is not a Gaussian, and 
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a skewness in the distribution may contribute essentially to the straggling. 
Chu and Friedman (1965) measured, by use of the D-D fusion process, 
the penetration in Al and Au of 20 keV deuterons in different molecular ions 
(D+, Dq, HD+, etc.) and found the distribution to depend on the molecular 
stale of the incoming deuterons. Such effects are not fully understood. 
Qualitatively, the average projected range and the straggling agree with 
theory. In both cases the velocity proportional stopping may be applied.

§ 3. Length of Particle Path

Since the appearance of LSS a large number of different range measure
ments have been performed, and some of the curves presented in LSS 
have been used in the analysis of experimental results. In order to compare 
more precisely theory and experiments, I have calculated several range
energy curves for A’-values other than those presented in LSS.

At low energies, (e < 1) , and not too large values of the electronic stopping 
parameter, k, k < 0.5, the nuclear stopping is dominating. Therefore, the curves 
Ö = ofc(e) for different k-values 0.1 < k < 0.5 are closely spaced and inter
polations for intermediate A’-values are easily performed. At higher energies, where 
the electronic stopping becomes the more significant energy loss mechanism, 
another plot is more appropriate, cf. LSS. If nuclear stopping is disregarded, the 
range is given by the extrapolated electronic range

o

£

As shown in LSS, oe is given by

Og(f) = Ofc(r) + Z1(A’,e), (16)

where the nuclear range correction zl may be calculated simply by means of the 
stopping powers, zl is nearly constant at high energies. In case of velocity propor
tional electronic stopping, the extrapolated electronic range is given by oe(s) = 
2//c-eV2.

Values of o/e) for 0.002 < e < 600 for several Å'-values in the interval 
0.05 < k < 1.6 are presented in Table 1. The function (ds/d())n is also 
included. In Table 2 are given values of the function (k/2) • d(k ,e) for 
1 < s < 600 for the same Å'-values. The asymptotic values of Zl al high 
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energies are shown in Fig. 4. Some of the results in Tables 1 and 2 were 
utilized in plotting the curves presented in LSS.

The range straggling, zlo^(e), was also calculated in LSS for a few 
values of k. At low energies, where Se « Sn, a small error in A is not signif
icant, but al high energies it is of interest to eliminate, as far as possible,

uncertainties in the theoretical estimate of A'. It (urns out that in the case of 
straggling the quantity Aq^q^ is a slowly varying function of k. Accordingly, 
a value of this quantity, obtained from LSS, may be compared with an 
experimentally determined average range to give a more precise estimate 
of J??.
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Table 2.
Nuclear range correction, A’/2e), cf. (16).

A 0.05 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.18

1 0.94 0.91 0.90 0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82
2 1.29 1.22 1.21 1.19 1.17 1.15 1.14 1.12 1.10 1.09 1.06
4 1.72 1.60 1.57 1.53 1.50 1.47 1.45 1.42 1.39 1.37 1.33
6 2.01 1.84 1.79 1.73 1.70 1.66 1.63 1.59 1.56 1.53 1.47
8 2.22 2.00 1.94 1.88 1.84 1.79 1.75 1.71 1.67 1.63 1.57

10 2.38 2.12 2.06 1.98 1.94 1.88 1.84 1.79 1.75 1.71 1.64
20 2.83 2.45 2.35 2.26 2.19 2.12 2.06 2.00 1.94 1.89 1.81
40 3.18 2.68 2.57 2.45 2.37 2.29 2.21 2.1 1 2.08 2.02 1.92
60 3.34 2.79 2.66 2.53 2.45 2.36 2.28 2.21 2.14 2.09 1.97

100 3.48 2.88 2.75 2.61 2.52 2.42 2.34 2.26 2.16 2.13 2.02
200 3.60 2.96 2.80 2.68 2.59 2.47 2.39 2.31 2.20 2.16 2.05
400 3.68 3.00 2.83 2.71 2.62 2.50 2.42 2.36 2.23 2.19 2.07
600 3.71 3.02 2.85 2.72 2.66 2.52 2.46 2.38 2.24 2.20 2.09

0.20 0.22 0.25 0.30 0.40 0.60 0.80 1.0 1.2 1.6

1 0.80 0.78 0.76 0.73 0.67 0.59 0.52 0.47 0.43 0.37
2 1.03 1.01 0.98 0.93 0.84 0.71 0.63 0.56 0.50 0.42
4 1.28 1.25 1.20 1.12 1.00 0.83 0.72 0.63 0.57 0.47
6 1.42 1.37 1.31 1.22 1.08 0.89 0.76 0.67 0.60 0.50
8 1.51 1.46 1.39 1.29 1.13 0.92 0.79 0.69 0.62 0.51

10 1.57 1.52 1.44 1.33 1.16 0.95 0.80 0.71 0.63 0.52
20 1.73 1.65 1.56 1.4 1 1.25 1.00 0.85 0.71 0.66 0.55
40 1.84 1.74 1.64 1.50 1.30 1.03 0.87 0.75 0.67 0.56
60 1.88 1.79 1.69 1.54 1.32 1.05 0.88 0.77 0.69 0.56

100 1.92 1.83 1.71 1.57 1.35 1.06 0.89 0.77 0.69 0.56
200 1.94 1.85 1.7 1 1.58 1.36 1.07 0.90 0.78 0.69 0.56
400 1.96 1.87 1.76 1.61 1.37 1.08 0.90 0.78 0.69 0.56
600 1.98 1.88 1.77 1.62 1.38 1.08 0.91 0.78 0.70 0.56

Appendix
Distribution in Projected Range

When a beam of particles is stopped in a substance, the individual paths 
of the particles are very different from each other. It is possible in principle 
to find the final distribution in space of the particles by means of electronic 
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computers, but with increasing energy of the particles and increasing number 
of atoms in the slopping material, such calculations become very intricate 
and expensive.

One may, however, derive analytical expressions governing the distri
bution in projected range, Rp, and in the perpendicular range, Z?±. These 
expressions are integral equations, which are difficult to solve. Instead of 
attempting a direct solution, it is more fruitful to transform the distribution 
equation into equations describing the moments of the distribution. The 
latter may be solved by means of fair approximations, thereby supplying 
some information about the distribution functions too.

Consider a particle (Z1,A1) with energy E, moving in a substance 
(Z2,A2) in a direction specified by the angle d with a certain direction in 
the substance (e.g. the surface normal), which is chosen as the z-axis. 
Define now a distribution function p(E,z,cos d) such that p(E,z,cos d)dz 
represents the probability that the final z-value comes between z and z + dz.

Define analogously a distribution function q(E,r,cos d) such that 
q(E,r,cos d)-27trdr is the probability of finding the final distance from 
the z-axis between r and r + dr. The moments are given by

oo

<zw> - <7Ç(E,cosfl)> = p(E,z,cos d)-zmdz, (A.l)
— oo

00

(rmy = (R™(E, cos'&'yy = f q(E,r, cos d)- 2ztrm + 1dr, (A. 2) 

o

where we have introduced the expressions Rp(E, cos $) and R±(E, cos #) 
for z and r, respectively. Clearly, Rp(E,cos d) is to be interpreted as the 
penetration depth of a particle originally moving in a direction specified by 
the angle d, and R(E,cosd) is the final distance from the z-axis of the 
same particle.

Integral equations for p(E,z,cos d) and q(E,r,cos d) may be derived 
in analogy to the derivation of equation (3.1) in LSS, i.e. the equation 
governing the distribution in range along the path. We find readily

dp(E,z, cos d)
cos d-------------

dz
2~l

4M IM7'"

0

cos#cosç> + sin d sin cp cos a) — p(E, z, cosd) ,
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sin #---- —
dq(E,r, cos#)

dr
(A.4)

o

where 9? is the deflection of the incoming particle in die laboratory system, 
a being the azimuthal angle.

Equations (A. 3) and (A. 4) are valid under the same conditions as the 
corresponding equation (LSS (3.1)) describing the distribution in range 
along the path, i.e. the stopping substance should be a “random” system, 
fhe equation mentioned is contained in (A. 3), as may be seen by 
neglecting the angular dependence in (A. 3), putting & = 0. The same ap
proximations as those introduced in the solution of the former equation 
may be employed in (A. 3) and (A.4), i.e. we assume that the energy 
losses to electrons are small and separated from nuclear energy losses.

We shall not introduce the approximations at this stage, but at once 
turn to the moments of the distribution. Multiply (A. 3) by zm and integrate 
over all z; analogously multiply (A. 4) by 2%r/ft + 1 and integrate over all r, 
to obtain the formulae

- in ■ cos 0 cos #)>

(A. 5)

0

— (m + l)sin# <7?2i_1(/ACOs#)>

0

(A. 6)

The connection of the ranges (E, cos #) and /? (E, cos #) to the more 
interesting expressions Rp(E) and E±(E), i.e. the ranges corresponding to 
initial angle # = 0, is given by Eig. 5.

Rp(E, cos = Ep(E) • cos # + E±(E) sin # • cos/?,

R±(E, cos#) = {[Ep(E)sin # + R1(E)cos^cos/?]2+[E±(E)sin/?]2)12. 
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where ß is an azimuthal angle which is randomly distributed. We are 
interested in the case where the particle initially moves in the z-direction, 
i.e. we put ft = 0 in (A. 5) and (A. 6):

Figure 5. Illustration of connection between different range concepts.

m <ß™-\E)> - N jd<Jn_e{<R^(E))-(R"(E-T,cos (A.7)

0 - N j danie{<R^(E)>-<.R^(E-T,eosV)>}. (A.8)

(A. 7) yields, for m = 1, the simple equation (4) for the average projected 
range, and m = 2 yields the two coupled equations

25,(E) - 7)510^} (A.9)

0 - N j don> e [ E2(E) -R2 (E - T) sin2 <p-R*(E-  T)------- 1----- k (A. 10)

By introducing the ranges E2 = E2 +E2 and E2 = E2 — -^E2, (A. 9) and 
(A. 10) finally read (cf. LSS)

25,(E) - ïVjd<7,,e{Ëf(E)-ËJ(E-T)} (A.ll)

25,(E) - Aj'd<z„,e{Ë2(E)-(l-|sin2¥,)R2(E-7’)}, (A.12)

which equations may be solved separately if the source term Rp(E) is 
known, thereby giving E2 and E2.
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